The Liouville Theorem for Discrete Symmetric Averaging Operators

We introduce averaging operators on lattices $$\mathbb Z^d$$ Z d and study the Liouville property for functions satisfying mean value properties associated to such operators. This framework encloses discrete harmonic, p -harmonic, $$\infty $$ ∞ -harmonic and the so-called game p -harmonic functions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2024-11
Hauptverfasser: Adamowicz, Tomasz, Llorente, José G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce averaging operators on lattices $$\mathbb Z^d$$ Z d and study the Liouville property for functions satisfying mean value properties associated to such operators. This framework encloses discrete harmonic, p -harmonic, $$\infty $$ ∞ -harmonic and the so-called game p -harmonic functions. Our approach provides an elementary alternative proof of the Liouville Theorem for positive p -harmonic functions on $$\mathbb Z^d$$ Z d .
ISSN:0926-2601
1572-929X
DOI:10.1007/s11118-024-10174-0