The Liouville Theorem for Discrete Symmetric Averaging Operators
We introduce averaging operators on lattices $$\mathbb Z^d$$ Z d and study the Liouville property for functions satisfying mean value properties associated to such operators. This framework encloses discrete harmonic, p -harmonic, $$\infty $$ ∞ -harmonic and the so-called game p -harmonic functions....
Gespeichert in:
Veröffentlicht in: | Potential analysis 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce averaging operators on lattices $$\mathbb Z^d$$ Z d and study the Liouville property for functions satisfying mean value properties associated to such operators. This framework encloses discrete harmonic, p -harmonic, $$\infty $$ ∞ -harmonic and the so-called game p -harmonic functions. Our approach provides an elementary alternative proof of the Liouville Theorem for positive p -harmonic functions on $$\mathbb Z^d$$ Z d . |
---|---|
ISSN: | 0926-2601 1572-929X |
DOI: | 10.1007/s11118-024-10174-0 |