A Characterization of Hardy Spaces Associated with Certain Schrödinger Operators
Let { K t } t >0 be the semigroup of linear operators generated by a Schrödinger operator − L = Δ − V ( x ) on ℝ d , d ≥ 3, where V ( x ) ≥ 0 satisfies Δ −1 V ∈ L ∞ . We say that an L 1 -function f belongs to the Hardy space H L 1 if the maximal function ℳ L f ( x ) = sup t >0 | K t f ( x )| b...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2014-10, Vol.41 (3), p.917-930 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {
K
t
}
t
>0
be the semigroup of linear operators generated by a Schrödinger operator −
L
=
Δ
−
V
(
x
) on ℝ
d
,
d
≥ 3, where
V
(
x
) ≥ 0 satisfies
Δ
−1
V
∈
L
∞
. We say that an
L
1
-function
f
belongs to the Hardy space
H
L
1
if the maximal function ℳ
L
f
(
x
) = sup
t
>0
|
K
t
f
(
x
)| belongs to
L
1
(ℝ
d
). We prove that the operator (−
Δ
)
1/2
L
−1/2
is an isomorphism of the space
H
L
1
with the classical Hardy space
H
1
(ℝ
d
) whose inverse is
L
1/2
(−
Δ
)
−1/2
. As a corollary we obtain that the space
H
L
1
is characterized by the Riesz transforms
R
j
=
∂
∂
x
j
L
−
1
/
2
. |
---|---|
ISSN: | 0926-2601 1572-929X |
DOI: | 10.1007/s11118-014-9400-2 |