The overlooked rotational isomerism of C-glycosyl flavonoids
C-glycosyl flavonoids are important secondary plant metabolites with a wide range of biological activities. Rotational isomerism, arising from restricted bond rotation, has been observed on a portion of C-glycosyl flavonoids. NMR technique contributes most to the observation and research of this phe...
Gespeichert in:
Veröffentlicht in: | Phytochemistry reviews 2019-04, Vol.18 (2), p.443-461 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | C-glycosyl flavonoids are important secondary plant metabolites with a wide range of biological activities. Rotational isomerism, arising from restricted bond rotation, has been observed on a portion of C-glycosyl flavonoids. NMR technique contributes most to the observation and research of this phenomenon. Signal duplication in NMR spectra may be the key characteristic of C-glycosyl flavonoids existing as rotamers. Bulky steric hindrance from the substituents at position 7 and sugar moieties are responsible for the restricted bond rotation. There are other influence factors including temperature, solvents, H-bonds and π-stacking, but these are of lesser importance. Difference exists between 8-C-glycosyl flavonoids and their 6-C-glycosyl isomers despite sharing the same flavonoid aglycone and sugar moiety. 8-C-glycosyl flavonoids are more likely to suffer from restricted rotation. The energy barriers between rotamers of C-glycosyl flavonoids seem not high enough for atropisomerism to be realized and the isolation of rotamers should be difficult. |
---|---|
ISSN: | 1568-7767 1572-980X |
DOI: | 10.1007/s11101-019-09601-7 |