The overlooked rotational isomerism of C-glycosyl flavonoids

C-glycosyl flavonoids are important secondary plant metabolites with a wide range of biological activities. Rotational isomerism, arising from restricted bond rotation, has been observed on a portion of C-glycosyl flavonoids. NMR technique contributes most to the observation and research of this phe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytochemistry reviews 2019-04, Vol.18 (2), p.443-461
Hauptverfasser: Zhou, Guohong, Yan, Renliang, Wang, Xiaogen, Li, Shaolin, Lin, Jin, Liu, Jia, Zhao, Zhendong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:C-glycosyl flavonoids are important secondary plant metabolites with a wide range of biological activities. Rotational isomerism, arising from restricted bond rotation, has been observed on a portion of C-glycosyl flavonoids. NMR technique contributes most to the observation and research of this phenomenon. Signal duplication in NMR spectra may be the key characteristic of C-glycosyl flavonoids existing as rotamers. Bulky steric hindrance from the substituents at position 7 and sugar moieties are responsible for the restricted bond rotation. There are other influence factors including temperature, solvents, H-bonds and π-stacking, but these are of lesser importance. Difference exists between 8-C-glycosyl flavonoids and their 6-C-glycosyl isomers despite sharing the same flavonoid aglycone and sugar moiety. 8-C-glycosyl flavonoids are more likely to suffer from restricted rotation. The energy barriers between rotamers of C-glycosyl flavonoids seem not high enough for atropisomerism to be realized and the isolation of rotamers should be difficult.
ISSN:1568-7767
1572-980X
DOI:10.1007/s11101-019-09601-7