Responses of young ‘Pink lady’ apple to alternate deficit irrigation following long-term drought: growth, photosynthetic capacity, water-use efficiency, and sap flow

We studied photosynthetic capacity, growth, sap flow, and water-use efficiency in young trees of ‘Pink Lady’ apple (Malus domestica) that were exposed to 60 d of moisture stress. Three irrigation schemes were tested in the greenhouse: well-watered control; drought; or alternate deficit irrigation (A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photosynthetica 2012-12, Vol.50 (4), p.501-507
Hauptverfasser: Sun, X. P, Yan, H. L, Ma, P, Liu, B. H, Zou, Y. J, Liang, D, Ma, F. W, Li, P. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied photosynthetic capacity, growth, sap flow, and water-use efficiency in young trees of ‘Pink Lady’ apple (Malus domestica) that were exposed to 60 d of moisture stress. Three irrigation schemes were tested in the greenhouse: well-watered control; drought; or alternate deficit irrigation (ADI). Compared with the drought-stressed plants, those treated via ADI showed better height growth, larger scion diameters, and greater total leaf area, as well as significantly increased gains in dry biomass and rootstock diameters. However, their performance was still significantly lower than that demonstrated by continuously well-watered plants. Sap flow was greater under ADI than under drought, but less than under control conditions. The average rate of net photosynthesis, total amount of irrigation water applied, and dry biomass gain had highly significant and positive linear correlations with long-term water-use efficiency (WUEL). The same was true between average stomatal conductance and WUEL. By contrast, instantaneous water-use efficiency (WUEI) was very significantly and negatively correlated with WUEL. In addition, values for WUEL were much higher from well-watered plants when compared with either drought-stressed trees or those treated per ADI. Therefore, our results indicate that, although ‘Pink Lady’ apple normally has high WUE, it still consumes a large amount of water. Therefore, the practice of ADI following a period of long-term drought could be used to improve growth and WUEL by this cultivar.
ISSN:0300-3604
1573-9058
DOI:10.1007/s11099-012-0058-y