On Chains in H-Closed Topological Pospaces

We study chains in an H -closed topological partially ordered space. We give sufficient conditions for a maximal chain L in an H -closed topological partially ordered space ( H -closed topological semilattice) under which L contains a maximal (minimal) element. We also give sufficient conditions for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Order (Dordrecht) 2010-03, Vol.27 (1), p.69-81
Hauptverfasser: Gutik, Oleg, Pagon, Dušan, Repovš, Dušan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study chains in an H -closed topological partially ordered space. We give sufficient conditions for a maximal chain L in an H -closed topological partially ordered space ( H -closed topological semilattice) under which L contains a maximal (minimal) element. We also give sufficient conditions for a linearly ordered topological partially ordered space to be H -closed. We prove that a linearly ordered H -closed topological semilattice is an H -closed topological pospace and show that in general, this is not true. We construct an example of an H -closed topological pospace with a non- H -closed maximal chain and give sufficient conditions under which a maximal chain of an H -closed topological pospace is an H -closed topological pospace.
ISSN:0167-8094
1572-9273
DOI:10.1007/s11083-010-9140-x