On Chains in H-Closed Topological Pospaces
We study chains in an H -closed topological partially ordered space. We give sufficient conditions for a maximal chain L in an H -closed topological partially ordered space ( H -closed topological semilattice) under which L contains a maximal (minimal) element. We also give sufficient conditions for...
Gespeichert in:
Veröffentlicht in: | Order (Dordrecht) 2010-03, Vol.27 (1), p.69-81 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study chains in an
H
-closed topological partially ordered space. We give sufficient conditions for a maximal chain
L
in an
H
-closed topological partially ordered space (
H
-closed topological semilattice) under which
L
contains a maximal (minimal) element. We also give sufficient conditions for a linearly ordered topological partially ordered space to be
H
-closed. We prove that a linearly ordered
H
-closed topological semilattice is an
H
-closed topological pospace and show that in general, this is not true. We construct an example of an
H
-closed topological pospace with a non-
H
-closed maximal chain and give sufficient conditions under which a maximal chain of an
H
-closed topological pospace is an
H
-closed topological pospace. |
---|---|
ISSN: | 0167-8094 1572-9273 |
DOI: | 10.1007/s11083-010-9140-x |