Necessary conditions for the existence of positive solutions of second-order linear difference equations and sufficient conditions for the oscillation of solutions
We consider the difference equation where m ∈ N , the functions p l : N → R + and τ l : N → N , lim k→ + ∞ τ l ( k ) = + ∞ , l = 1, …, m, are defined on the set of natural numbers, and the difference operator is defined as follows: Δ u ( k ) = u ( k + 1) − u ( k ) , Δ 2 = Δ ◦ Δ . We establish necess...
Gespeichert in:
Veröffentlicht in: | Nonlinear oscillations 2009-04, Vol.12 (2), p.184-198 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the difference equation
where
m
∈
N
, the functions
p
l
:
N → R
+
and
τ
l
:
N → N
, lim
k→
+
∞
τ
l
(
k
) = +
∞
,
l
= 1, …,
m,
are defined on the set of natural numbers, and the difference operator is defined as follows: Δ
u
(
k
) =
u
(
k
+ 1)
− u
(
k
)
,
Δ
2
= Δ ◦ Δ
.
We establish necessary conditions for the above equation to have a positive solution. We also obtain oscillation criteria of a new type that generalize some earlier known results. |
---|---|
ISSN: | 1536-0059 1536-0059 |
DOI: | 10.1007/s11072-009-0071-7 |