Performance evaluation of regional climate model simulations at different spatial and temporal scales over the complex orography area of the Alpine region
This work provides a significant contribution on the open debate in the climate community to establish the added value of very high-resolution configurations, characterized by a horizontal resolution below 4 km with respect to current state-of-the-art climate simulations (10–15 km). Specifically, it...
Gespeichert in:
Veröffentlicht in: | Natural hazards (Dordrecht) 2020-05, Vol.102 (1), p.151-177 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work provides a significant contribution on the open debate in the climate community to establish the added value of very high-resolution configurations, characterized by a horizontal resolution below 4 km with respect to current state-of-the-art climate simulations (10–15 km). Specifically, it aims at assessing quantitative gains and losses in the performance of climate models caused by an enhancement in temporal and spatial resolution by evaluating the capability of different climate simulations in reproducing daily and sub-daily present precipitation dynamics over a complex orographic context such as the Alpine region. In this perspective, the results of three experiments (EURO-CORDEX ensemble mean, CCLM 8 and CCLM 2.2) at different spatial (~ 12, 8 and 2.2 km) and temporal (daily, 6 h and 3 h) scales are compared to gridded and point-scale observational datasets. Precipitation data are analyzed by mean of the Expert Team on Climate Change Detection and Indices indicators, as well as with statistical models able to evaluate the precipitation distribution and the extreme values for different durations of precipitation events. To objectively assess gains and losses in adopting high-resolution RCMs, data are elaborated assuming the distribution added value as metric, particularly focusing on the role of orography. The work returns, at daily scale, a gain in climate model performances moving from lower to higher horizontal resolution. At the same time, investigating the effect of the orography the simulation with the finest grid proves to better capture local precipitation dynamics at higher altitudes in terms of both sub-daily precipitation and extreme events. |
---|---|
ISSN: | 0921-030X 1573-0840 |
DOI: | 10.1007/s11069-020-03916-x |