Fe3O4 nanoparticle loaded paclitaxel induce multiple myeloma apoptosis by cell cycle arrest and increase cleavage of caspases in vitro

Multiple myeloma (MM) still remains an incurable disease in spite of extending the patient survival by new therapies. The hypothesis of cancer stem cells (CSCs) states that although chemotherapy kills most tumor cells, it is believed to leave a reservoir of CSCs that allows the tumor cell propagatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2013-08, Vol.15 (8), Article 1840
Hauptverfasser: Yang, Cuiping, He, Xiangfeng, Chen, Junsong, Chen, Dengyu, Liu, Yunjing, Xiong, Fei, Shi, Fangfang, Dou, Jun, Gu, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiple myeloma (MM) still remains an incurable disease in spite of extending the patient survival by new therapies. The hypothesis of cancer stem cells (CSCs) states that although chemotherapy kills most tumor cells, it is believed to leave a reservoir of CSCs that allows the tumor cell propagation. The objective of this research was to evaluate the therapeutic effect of new paclitaxel-Fe 3 O 4 nanoparticles (PTX-NPs) with an average size range of 7.17 ± 1.31 nm on MM CSCs in vitro. The characteristics of CD138 − CD34 − cells, isolated from human MM RPMI 8226 and NCI-H929 cell lines by the magnetic associated cell sorting method, were identified by the assays of colony formation, cell proliferation, drug resistance, cell migration, and tumorigenicity in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, respectively. Inhibitory effects of PTX-NPs on CD138 − CD34 − cells were evaluated by a variety of assays in vitro. The results showed that the CD138 − CD34 − cells were capable of forming colonies, exhibited high proliferative and migratory ability, possessed a strong drug resistance, and had powerful tumorigenicity in NOD/SCID mice compared to non-CD138 − CD34 − cells. PTX-NPs significantly inhibited CD138 − CD34 − cell viability and invasive ability, and resulted in G0/G1 cell cycle arrest and apoptosis compared with PTX alone. We concluded that the CD138 − CD34 − phenotype cells might be CSCs in RPMI 8226 and NCI-H929 cell lines. PTX-NPs had an obvious inhibitory effect on MM CD138 − CD34 − CSCs. The findings may provide a guideline for PTX-NPs’ treatment of MM CSCs in preclinical investigation.
ISSN:1388-0764
1572-896X
DOI:10.1007/s11051-013-1840-x