A framework for designing of genetic operators automatically based on gene expression programming and differential evolution
The design of genetic operators is absolutely one of the core work of evolutionary algorithms research. However, the essence of the evolutionary algorithms is that a lot of algorithm design is based on the manual result analysis, summarize, refine, feedback, and then, the algorithms are designed ada...
Gespeichert in:
Veröffentlicht in: | Natural computing 2021-09, Vol.20 (3), p.395-411 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The design of genetic operators is absolutely one of the core work of evolutionary algorithms research. However, the essence of the evolutionary algorithms is that a lot of algorithm design is based on the manual result analysis, summarize, refine, feedback, and then, the algorithms are designed adaptively and correspondingly. This kind of design scheme needs artificial statistics and analysis of large amounts of data, which greatly increases the burden of the designers. To solve this problem, an evolutionary algorithm framework based on genetic operator automatic design is proposed in this paper. In the first step, Gene Expression Programming and Differential Evolution methods are combined together and used to design the genetic operators automatically and adaptively, this hybrid method can not only explore solutions in problem space for the problem solving as most classical evolutionary algorithms do, but also generate genetic operators automatically in operator space for the proper operators extraction and selection related to the evolutionary algorithms . In the second step, the designed operators are adopted into the typical evolutionary algorithms to verify the performance and the result shows that the new designed genetic operator is superior to or at least equivalent to some existing DE variants in a set of classical benchmark functions. More importantly, this paper is not aimed at designing high performance algorithms, but to provide a new perspective for algorithms designing, and to provide a reference scheme for the machine algorithms designing. |
---|---|
ISSN: | 1567-7818 1572-9796 |
DOI: | 10.1007/s11047-020-09830-2 |