Stable and real-zero polynomials in two variables
For every bivariate polynomial p ( z 1 , z 2 ) of bidegree ( n 1 , n 2 ) , with p ( 0 , 0 ) = 1 , which has no zeros in the open unit bidisk, we construct a determinantal representation of the form p ( z 1 , z 2 ) = det ( I - K Z ) , where Z is an ( n 1 + n 2 ) × ( n 1 + n 2 ) diagonal matrix with c...
Gespeichert in:
Veröffentlicht in: | Multidimensional systems and signal processing 2016-01, Vol.27 (1), p.1-26 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For every bivariate polynomial
p
(
z
1
,
z
2
)
of bidegree
(
n
1
,
n
2
)
, with
p
(
0
,
0
)
=
1
, which has no zeros in the open unit bidisk, we construct a determinantal representation of the form
p
(
z
1
,
z
2
)
=
det
(
I
-
K
Z
)
,
where
Z
is an
(
n
1
+
n
2
)
×
(
n
1
+
n
2
)
diagonal matrix with coordinate variables
z
1
,
z
2
on the diagonal and
K
is a contraction. We show that
K
may be chosen to be unitary if and only if
p
is a (unimodular) constant multiple of its reverse. Furthermore, for every bivariate real-zero polynomial
p
(
x
1
,
x
2
)
,
with
p
(
0
,
0
)
=
1
, we provide a construction to build a representation of the form
p
(
x
1
,
x
2
)
=
det
(
I
+
x
1
A
1
+
x
2
A
2
)
,
where
A
1
and
A
2
are Hermitian matrices of size equal to the degree of
p
. A key component of both constructions is a stable factorization of a positive semidefinite matrix-valued polynomial in one variable, either on the circle (trigonometric polynomial) or on the real line (algebraic polynomial). |
---|---|
ISSN: | 0923-6082 1573-0824 |
DOI: | 10.1007/s11045-014-0286-3 |