Radar imaging for targets with complex rotation based on phase history decomposition
Traditional inverse synthetic aperture radar (ISAR) imaging algorithms can not obtain focused images when the target undergoes complex three-dimensional (3D) rotation. An imaging algorithm to obtain two dimensional (2D) images or 3D distributions of scattering centers is proposed in this paper for t...
Gespeichert in:
Veröffentlicht in: | Multidimensional systems and signal processing 2014-07, Vol.25 (3), p.425-445 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional inverse synthetic aperture radar (ISAR) imaging algorithms can not obtain focused images when the target undergoes complex three-dimensional (3D) rotation. An imaging algorithm to obtain two dimensional (2D) images or 3D distributions of scattering centers is proposed in this paper for targets undergoing complex rotation in a small angular extent. Firstly, the phase histories of different scattering centers are extracted by signal decomposition and they are arranged into a phase history matrix. Then, the singular value decomposition is carried out for the phase matrix to reveal the rotation characters. 3D rotations and 2D rotations are identified from the singular values and these two cases are treated separately. When target undergoes 2D rotation, the focused ISAR image can be obtained by resampling the received signals according to the first column of the right singular matrix. When target undergoes 3D rotation, the distorted 3D scattering center model can be obtained directly from the first and second columns of the left singular matrix. The distortion and ambiguity for the extracted 3D scattering center model are also analyzed theoretically. Simulations and experimental results verify the effectiveness of the algorithm. |
---|---|
ISSN: | 0923-6082 1573-0824 |
DOI: | 10.1007/s11045-012-0206-3 |