Local coordinates on Lie groups for half-explicit time integration of Cosserat-rod models with constraints

Explicit Runge–Kutta methods are the gold standard of time-integration methods for nonstiff problems in system dynamics since they combine a small numerical effort per time step with high accuracy, error control, and straightforward implementation. For the analysis of beam dynamics, we couple them w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multibody system dynamics 2024-06
Hauptverfasser: Tumiotto, Denise, Arnold, Martin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Explicit Runge–Kutta methods are the gold standard of time-integration methods for nonstiff problems in system dynamics since they combine a small numerical effort per time step with high accuracy, error control, and straightforward implementation. For the analysis of beam dynamics, we couple them with a local coordinates approach in a Lie group setting to address large rotations. Stiff shear forces and inextensibility conditions are enforced by internal constraints in a coarse-grid discretization of a geometrically exact beam model. The resulting nonstiff constrained systems are handled by a half-explicit approach that relies on the constraints at velocity level and avoids all kinds of Newton–Raphson iteration. We construct half-explicit Runge–Kutta Lie group methods of order up to five that are equipped with an adaptive step-size strategy using embedded Runge–Kutta pairs for error estimation. The methods are tested successfully for a roll-up maneuver of a flexible beam and for the classical flying-spaghetti benchmark.
ISSN:1384-5640
1573-272X
DOI:10.1007/s11044-024-10002-8