Machine learning based detection of depression from task-based fMRI using weighted-3D-DWT denoising method
Depression has become an important public health problem in recent years because the probability of a depressive episode in a person's entire life is generally between 18-20%. Neuroimaging techniques investigate diagnostic biomarkers in depression disorders and support traditional communication...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024, Vol.83 (4), p.11805-11829 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Depression has become an important public health problem in recent years because the probability of a depressive episode in a person's entire life is generally between 18-20%. Neuroimaging techniques investigate diagnostic biomarkers in depression disorders and support traditional communication-based diagnosis in psychiatry. The quality of the brain images used in functional MRI (fMRI), and the design of decision support systems using these images are essential for accurate diagnosis. The Gaussian smoothing for fMRI preprocessing blurs the image for statistical analysis but is inadequate because image detail is lost during filtering, leading to poor classification results. We argue that the weighted-3 Dimensional-Discrete Wavelet Transform (weighted-3D-DWT) denoising approach instead of Gaussian smoothing for task-based fMRI. The activation maps show differences in intensity values in the cluster size of voxels in the mood-related regions between patients and control subjects (
p |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-023-15935-4 |