Commuting Jacobi Operators on Real Hypersurfaces of Type B in the Complex Quadric
In this paper, first, we investigate the commuting property between the normal Jacobi operator R ̄ N and the structure Jacobi operator R ξ for Hopf real hypersurfaces in the complex quadric Q m = S O m + 2 / S O m S O 2 for m ≥ 3 , which is defined by R ̄ N R ξ = R ξ R ̄ N . Moreover, a new characte...
Gespeichert in:
Veröffentlicht in: | Mathematical physics, analysis, and geometry analysis, and geometry, 2020-12, Vol.23 (4), Article 44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, first, we investigate the commuting property between the normal Jacobi operator
R
̄
N
and the structure Jacobi operator
R
ξ
for Hopf real hypersurfaces in the complex quadric
Q
m
=
S
O
m
+ 2
/
S
O
m
S
O
2
for
m
≥
3
, which is defined by
R
̄
N
R
ξ
=
R
ξ
R
̄
N
. Moreover, a new characterization of Hopf real hypersurfaces with
A
-principal singular normal vector field in the complex quadric
Q
m
is obtained. By virtue of this result, we can give a remarkable classification of Hopf real hypersurfaces in the complex quadric
Q
m
with commuting Jacobi operators. |
---|---|
ISSN: | 1385-0172 1572-9656 |
DOI: | 10.1007/s11040-020-09370-2 |