Commuting Jacobi Operators on Real Hypersurfaces of Type B in the Complex Quadric

In this paper, first, we investigate the commuting property between the normal Jacobi operator R ̄ N and the structure Jacobi operator R ξ for Hopf real hypersurfaces in the complex quadric Q m = S O m + 2 / S O m S O 2 for m ≥ 3 , which is defined by R ̄ N R ξ = R ξ R ̄ N . Moreover, a new characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical physics, analysis, and geometry analysis, and geometry, 2020-12, Vol.23 (4), Article 44
Hauptverfasser: Lee, Hyunjin, Suh, Young Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, first, we investigate the commuting property between the normal Jacobi operator R ̄ N and the structure Jacobi operator R ξ for Hopf real hypersurfaces in the complex quadric Q m = S O m + 2 / S O m S O 2 for m ≥ 3 , which is defined by R ̄ N R ξ = R ξ R ̄ N . Moreover, a new characterization of Hopf real hypersurfaces with A -principal singular normal vector field in the complex quadric Q m is obtained. By virtue of this result, we can give a remarkable classification of Hopf real hypersurfaces in the complex quadric Q m with commuting Jacobi operators.
ISSN:1385-0172
1572-9656
DOI:10.1007/s11040-020-09370-2