On a matrix element representation of the GKZ hypergeometric functions

We develop a representation theory approach to the study of generalized hypergeometric functions of Gelfand, Kapranov and Zelevisnky (GKZ). We show that the GKZ hypergeometric functions may be identified with matrix elements of non-reductive Lie algebras L N of oscillator type. The Whittaker functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in mathematical physics 2023-04, Vol.113 (2), Article 43
Hauptverfasser: Gerasimov, A. A., Lebedev, D. R., Oblezin, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a representation theory approach to the study of generalized hypergeometric functions of Gelfand, Kapranov and Zelevisnky (GKZ). We show that the GKZ hypergeometric functions may be identified with matrix elements of non-reductive Lie algebras L N of oscillator type. The Whittaker functions associated with principal series representations of gl ℓ + 1 ( R ) being special cases of GKZ hypergeometric functions thus admit along with a standard matrix element representations associated with reductive Lie algebra gl ℓ + 1 ( R ) , another matrix element representation in terms of L ℓ ( ℓ + 1 ) .
ISSN:1573-0530
1573-0530
DOI:10.1007/s11005-023-01658-y