On a matrix element representation of the GKZ hypergeometric functions
We develop a representation theory approach to the study of generalized hypergeometric functions of Gelfand, Kapranov and Zelevisnky (GKZ). We show that the GKZ hypergeometric functions may be identified with matrix elements of non-reductive Lie algebras L N of oscillator type. The Whittaker functio...
Gespeichert in:
Veröffentlicht in: | Letters in mathematical physics 2023-04, Vol.113 (2), Article 43 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a representation theory approach to the study of generalized hypergeometric functions of Gelfand, Kapranov and Zelevisnky (GKZ). We show that the GKZ hypergeometric functions may be identified with matrix elements of non-reductive Lie algebras
L
N
of oscillator type. The Whittaker functions associated with principal series representations of
gl
ℓ
+
1
(
R
)
being special cases of GKZ hypergeometric functions thus admit along with a standard matrix element representations associated with reductive Lie algebra
gl
ℓ
+
1
(
R
)
, another matrix element representation in terms of
L
ℓ
(
ℓ
+
1
)
. |
---|---|
ISSN: | 1573-0530 1573-0530 |
DOI: | 10.1007/s11005-023-01658-y |