Derived Poincaré–Birkhoff–Witt theorems: with an appendix by Vladimir Dotsenko

We propose a new general formalism that allows us to study Poincaré–Birkhoff–Witt type phenomena for universal enveloping algebras in the differential graded context. Using it, we prove a homotopy invariant version of the classical Poincaré–Birkhoff–Witt theorem for universal envelopes of Lie algebr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in mathematical physics 2023-02, Vol.113 (1), Article 15
Hauptverfasser: Khoroshkin, Anton, Tamaroff, Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new general formalism that allows us to study Poincaré–Birkhoff–Witt type phenomena for universal enveloping algebras in the differential graded context. Using it, we prove a homotopy invariant version of the classical Poincaré–Birkhoff–Witt theorem for universal envelopes of Lie algebras. In particular, our results imply that all the previously known constructions of universal envelopes of L ∞ -algebras (due to Baranovsky, Lada and Markl, and Moreno-Fernández) represent the same object of the homotopy category of differential graded associative algebras. We also extend Quillen’s classical quasi-isomorphism C ⟶ B U from differential graded Lie algebras to L ∞ -algebras; this confirms a conjecture of Moreno-Fernández.
ISSN:0377-9017
1573-0530
DOI:10.1007/s11005-022-01617-z