Derived Poincaré–Birkhoff–Witt theorems: with an appendix by Vladimir Dotsenko
We propose a new general formalism that allows us to study Poincaré–Birkhoff–Witt type phenomena for universal enveloping algebras in the differential graded context. Using it, we prove a homotopy invariant version of the classical Poincaré–Birkhoff–Witt theorem for universal envelopes of Lie algebr...
Gespeichert in:
Veröffentlicht in: | Letters in mathematical physics 2023-02, Vol.113 (1), Article 15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a new general formalism that allows us to study Poincaré–Birkhoff–Witt type phenomena for universal enveloping algebras in the differential graded context. Using it, we prove a homotopy invariant version of the classical Poincaré–Birkhoff–Witt theorem for universal envelopes of Lie algebras. In particular, our results imply that all the previously known constructions of universal envelopes of
L
∞
-algebras (due to Baranovsky, Lada and Markl, and Moreno-Fernández) represent the same object of the homotopy category of differential graded associative algebras. We also extend Quillen’s classical quasi-isomorphism
C
⟶
B
U
from differential graded Lie algebras to
L
∞
-algebras; this confirms a conjecture of Moreno-Fernández. |
---|---|
ISSN: | 0377-9017 1573-0530 |
DOI: | 10.1007/s11005-022-01617-z |