Combinatorial Quantum Field Theory and Gluing Formula for Determinants
We define the combinatorial Dirichlet-to-Neumann operator and establish a gluing formula for determinants of discrete Laplacians using a combinatorial Gaussian quantum field theory. In case of a diagonal inner product on cochains we provide an explicit local expression for the discrete Dirichlet-to-...
Gespeichert in:
Veröffentlicht in: | Letters in mathematical physics 2015-03, Vol.105 (3), p.309-340 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define the combinatorial Dirichlet-to-Neumann operator and establish a gluing formula for determinants of discrete Laplacians using a combinatorial Gaussian quantum field theory. In case of a diagonal inner product on cochains we provide an explicit local expression for the discrete Dirichlet-to-Neumann operator. We relate the gluing formula to the corresponding Mayer–Vietoris formula by Burghelea, Friedlander and Kappeler for zeta-determinants of analytic Laplacians, using the approximation theory of Dodziuk. Our argument motivates existence of gluing formulas as a consequence of a gluing principle on the discrete level. |
---|---|
ISSN: | 0377-9017 1573-0530 |
DOI: | 10.1007/s11005-015-0744-3 |