Combinatorial Quantum Field Theory and Gluing Formula for Determinants

We define the combinatorial Dirichlet-to-Neumann operator and establish a gluing formula for determinants of discrete Laplacians using a combinatorial Gaussian quantum field theory. In case of a diagonal inner product on cochains we provide an explicit local expression for the discrete Dirichlet-to-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in mathematical physics 2015-03, Vol.105 (3), p.309-340
Hauptverfasser: Reshetikhin, Nicolai, Vertman, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define the combinatorial Dirichlet-to-Neumann operator and establish a gluing formula for determinants of discrete Laplacians using a combinatorial Gaussian quantum field theory. In case of a diagonal inner product on cochains we provide an explicit local expression for the discrete Dirichlet-to-Neumann operator. We relate the gluing formula to the corresponding Mayer–Vietoris formula by Burghelea, Friedlander and Kappeler for zeta-determinants of analytic Laplacians, using the approximation theory of Dodziuk. Our argument motivates existence of gluing formulas as a consequence of a gluing principle on the discrete level.
ISSN:0377-9017
1573-0530
DOI:10.1007/s11005-015-0744-3