Fully inert subgroups of free Abelian groups

A subgroup H of an Abelian group G is called fully inert if ( ϕ H + H ) / H is finite for every ϕ ∈ End ( G ) . Fully inert subgroups of free Abelian groups are characterized. It is proved that H is fully inert in the free group G if and only if it is commensurable with n G for some n ≥ 0 , that is,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Periodica mathematica Hungarica 2014-09, Vol.69 (1), p.69-78
Hauptverfasser: Dikranjan, D., Salce, L., Zanardo, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A subgroup H of an Abelian group G is called fully inert if ( ϕ H + H ) / H is finite for every ϕ ∈ End ( G ) . Fully inert subgroups of free Abelian groups are characterized. It is proved that H is fully inert in the free group G if and only if it is commensurable with n G for some n ≥ 0 , that is, ( H + n G ) / H and ( H + n G ) / n G are both finite. From this fact we derive a more structural characterization of fully inert subgroups H of free groups G , in terms of the Ulm–Kaplansky invariants of G / H and the Hill–Megibben invariants of the exact sequence 0 → H → G → G / H → 0 .
ISSN:0031-5303
1588-2829
DOI:10.1007/s10998-014-0041-4