Fully inert subgroups of free Abelian groups
A subgroup H of an Abelian group G is called fully inert if ( ϕ H + H ) / H is finite for every ϕ ∈ End ( G ) . Fully inert subgroups of free Abelian groups are characterized. It is proved that H is fully inert in the free group G if and only if it is commensurable with n G for some n ≥ 0 , that is,...
Gespeichert in:
Veröffentlicht in: | Periodica mathematica Hungarica 2014-09, Vol.69 (1), p.69-78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A subgroup
H
of an Abelian group
G
is called fully inert if
(
ϕ
H
+
H
)
/
H
is finite for every
ϕ
∈
End
(
G
)
. Fully inert subgroups of free Abelian groups are characterized. It is proved that
H
is fully inert in the free group
G
if and only if it is commensurable with
n
G
for some
n
≥
0
, that is,
(
H
+
n
G
)
/
H
and
(
H
+
n
G
)
/
n
G
are both finite. From this fact we derive a more structural characterization of fully inert subgroups
H
of free groups
G
, in terms of the Ulm–Kaplansky invariants of
G
/
H
and the Hill–Megibben invariants of the exact sequence
0
→
H
→
G
→
G
/
H
→
0
. |
---|---|
ISSN: | 0031-5303 1588-2829 |
DOI: | 10.1007/s10998-014-0041-4 |