Complex oscillation of differential polynomials in the unit disc

We consider the complex differential equations f ″ + A 1 ( z ) f ′ + A 0 ( z ) f = F and where A 0 ≢ 0, A 1 and F are analytic functions in the unit disc Δ = { z : | z | < 1}. We obtain results on the order and the exponent of convergence of zero-points in Δ of the differential polynomials g f =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Periodica mathematica Hungarica 2013-03, Vol.66 (1), p.45-60
Hauptverfasser: Latreuch, Zinelaâbidine, Belaïdi, Benharrat, El Farissi, Abdallah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the complex differential equations f ″ + A 1 ( z ) f ′ + A 0 ( z ) f = F and where A 0 ≢ 0, A 1 and F are analytic functions in the unit disc Δ = { z : | z | < 1}. We obtain results on the order and the exponent of convergence of zero-points in Δ of the differential polynomials g f = d 2 f ″ + d 1 f ′ + d 0 f with non-simultaneously vanishing analytic coefficients d 2 , d 1 , d 0 . We answer a question posed by J. Tu and C. F. Yi in 2008 for the case of the second order linear differential equations in the unit disc.
ISSN:0031-5303
1588-2829
DOI:10.1007/s10998-013-9795-3