The weak and strong asymptotic equivalence relations and the generalized inverse
We discuss the relationship between the weak and strong asymptotic equivalence relations and the generalized inverse in the class of all nondecreasing unbounded positive functions on a half-axis [ a, + ∞ ) ( a > 0). As a main result, we prove a proper characterization of the functional class R ∞...
Gespeichert in:
Veröffentlicht in: | Lithuanian mathematical journal 2011-10, Vol.51 (4), p.472-476 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss the relationship between the weak and strong asymptotic equivalence relations and the generalized inverse in the class
of all nondecreasing unbounded positive functions on a half-axis [
a,
+
∞
) (
a >
0). As a main result, we prove a proper characterization of the functional class
R
∞
∩
, where
R
∞
is the class of all rapidly varying functions. Also, we prove a characterization of the functional class
PI
*
∩
. |
---|---|
ISSN: | 0363-1672 1573-8825 |
DOI: | 10.1007/s10986-011-9141-5 |