Convergence in law of partial sum processes in p-variation norm
Let X 1 , X 2 , … be a sequence of independent identically distributed real-valued random variables, S n be the n th partial sum process S n ( t ) ≔ X 1 + ⋯ X ⌊ tn ⌋ , t ∈ [0, 1], W be the standard Wiener process on [0, 1], and 2 < p < ∞. It is proved that n −1/2 S n converges in law to σW as...
Gespeichert in:
Veröffentlicht in: | Lithuanian mathematical journal 2008-06, Vol.48 (2), p.212-227 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
1
,
X
2
, … be a sequence of independent identically distributed real-valued random variables,
S
n
be the
n
th partial sum process
S
n
(
t
) ≔
X
1
+ ⋯
X
⌊
tn
⌋
,
t
∈ [0, 1],
W
be the standard Wiener process on [0, 1], and 2 <
p
< ∞. It is proved that
n
−1/2
S
n
converges in law to
σW
as
n
→ ∞ in
p
-variation norm if and only if
EX
1
= 0 and
σ
2
=
EX
1
2
< ∞. The result is applied to test the stability of a regression model. |
---|---|
ISSN: | 0363-1672 1573-8825 |
DOI: | 10.1007/s10986-008-9001-0 |