Thermogravimetric analysis of single-walled carbon nanotubes synthesized by induction thermal plasma

A standard procedure for thermogravimetric analysis (TG) of carbonaceous materials including single-walled carbon nanotubes was developed based on a statistical design to precisely study the effect of three main TG parameters: temperature ramp (TR, °C), initial mass (IM) of the sample (mg), and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2012-12, Vol.110 (3), p.1079-1085
Hauptverfasser: Shahverdi, Ali, Soucy, Gervais
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A standard procedure for thermogravimetric analysis (TG) of carbonaceous materials including single-walled carbon nanotubes was developed based on a statistical design to precisely study the effect of three main TG parameters: temperature ramp (TR, °C), initial mass (IM) of the sample (mg), and the rate of flowing gas (sccm) on the TG results. In addition, the effect of sampling including sample morphology and moisture content on TG were studied. The results of statistical design clearly showed that TG was affected by these three parameters and particularly by IM and TR. Interestingly, it was observed that the TG results are affected insufficiently by the sample morphology and low moisture content. This study also confirmed the potential of TG combined with high-resolution scanning electron microscopy to be a simple and straightforward method for purity evaluation of SWCNT-containing samples with a complex TG behavior such as those of induction thermal plasma grown. A complementary study on nano-metric catalysts indicated that these types of materials enable to gain or loss mass in an oxidative ambient during TG. A mass loss of 6% and a mass gain of 23% were observed for pure nano-metric yttrium oxide and nickel, respectively. A simple calculation showed a total mass gain of 1 wt% particularly by the catalysts in the SWCNT sample during TG.
ISSN:1388-6150
1588-2926
1572-8943
DOI:10.1007/s10973-011-2114-4