The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes

We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2015-12, Vol.28 (4), p.1431-1446
Hauptverfasser: Rafler, Mathias, Zessin, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition which occurs in the construction of Papangelou processes. In particular, we show that these generalizations characterize classes of Poisson and Pólya point processes.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-014-0543-2