The Logical Postulates of Böge, Carnap and Johnson in the Context of Papangelou Processes
We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition wh...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2015-12, Vol.28 (4), p.1431-1446 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We adapt Johnson’s sufficiency postulate, Carnap’s prediction invariance postulate and Böge’s learn-merge invariance to the context of Papangelou processes and discuss equivalence of their generalizations, in particular their weak and strong generalizations. This discussion identifies a condition which occurs in the construction of Papangelou processes. In particular, we show that these generalizations characterize classes of Poisson and Pólya point processes. |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-014-0543-2 |