Emergence and Decay of π-Kinks in the Sine-Gordon Model with High-Frequency Pumping

In this paper, we consider the sine-Gordon equation with a high-frequency parametric pumping and a weak dissipative force. We examine the class of π -kink-type solutions that are soliton solutions of the nonperturbed sine-Gordon equation. In contrast to stable 2 π -kinks, these solutions are unstabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021, Vol.252 (2), p.175-189
Hauptverfasser: Kiselev, O. M., Novokshenov, V. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the sine-Gordon equation with a high-frequency parametric pumping and a weak dissipative force. We examine the class of π -kink-type solutions that are soliton solutions of the nonperturbed sine-Gordon equation. In contrast to stable 2 π -kinks, these solutions are unstable. We prove that the time of decaying of π -kinks due to small perturbations is proportional to the cube of the inverse period of fast oscillations of the parametric pumping. We derive a two-time asymptotic expansion of a solution of the boundary-value problem and analyze evolution of a wave packet whose leading term has the form of a π -kink. Numerical simulations of solutions confirm the good qualitative agreement with asymptotic expansions.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-020-05152-x