Groups Acting on Necklaces and Sandpile Groups
We introduce a group naturally acting on aperiodic necklaces of length n with two colors using a one-to-one correspondence between such necklaces and irreducible polynomials of degree n over the field F2 of two elements. We notice that this group is isomorphic to the quotient group of nondegenerate...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2014, Vol.200 (6), p.690-697 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a group naturally acting on aperiodic necklaces of length n with two colors using a one-to-one correspondence between such necklaces and irreducible polynomials of degree n over the field F2 of two elements. We notice that this group is isomorphic to the quotient group of nondegenerate circulant matrices of size n over that field modulo a natural cyclic subgroup. Our groups turn out to be isomorphic to the sandpile groups for a special sequence of directed graphs. Bibliography: 15 titles. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-014-1960-6 |