Groups Acting on Necklaces and Sandpile Groups

We introduce a group naturally acting on aperiodic necklaces of length n with two colors using a one-to-one correspondence between such necklaces and irreducible polynomials of degree n over the field F2 of two elements. We notice that this group is isomorphic to the quotient group of nondegenerate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2014, Vol.200 (6), p.690-697
Hauptverfasser: Duzhin, S. V., Pasechnik, D. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a group naturally acting on aperiodic necklaces of length n with two colors using a one-to-one correspondence between such necklaces and irreducible polynomials of degree n over the field F2 of two elements. We notice that this group is isomorphic to the quotient group of nondegenerate circulant matrices of size n over that field modulo a natural cyclic subgroup. Our groups turn out to be isomorphic to the sandpile groups for a special sequence of directed graphs. Bibliography: 15 titles.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-014-1960-6