Describing the Orbit Space of the Global Unitary Actions for Mixed Qudit States

The unitary U(d)-equivalence relation on the space β + of mixed states of a d-dimensional quantum system defines the orbit space β+/U(d) and provides its description in terms of the ring R[β+] U(d) of U(d)-invariant polynomials. We prove that the semi-algebraic structure of β+/U(d) is completely det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2014, Vol.200 (6), p.682-689
Hauptverfasser: Gerdt, V. P., Khvedelidze, A. M., Palii, Yu. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The unitary U(d)-equivalence relation on the space β + of mixed states of a d-dimensional quantum system defines the orbit space β+/U(d) and provides its description in terms of the ring R[β+] U(d) of U(d)-invariant polynomials. We prove that the semi-algebraic structure of β+/U(d) is completely determined by two basic properties of density matrices, their semi-positivity and Hermiticity. In particular, it is shown that the Procesi–Schwarz inequalities in the elements of the integrity basis for R[β+]U(d) defining the orbit space are identically satisfied for all elements of β+. Bibliography: 9 titles.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-014-1959-z