Describing the Orbit Space of the Global Unitary Actions for Mixed Qudit States
The unitary U(d)-equivalence relation on the space β + of mixed states of a d-dimensional quantum system defines the orbit space β+/U(d) and provides its description in terms of the ring R[β+] U(d) of U(d)-invariant polynomials. We prove that the semi-algebraic structure of β+/U(d) is completely det...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2014, Vol.200 (6), p.682-689 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The unitary U(d)-equivalence relation on the space β + of mixed states of a d-dimensional quantum system defines the orbit space β+/U(d) and provides its description in terms of the ring R[β+]
U(d)
of U(d)-invariant polynomials. We prove that the semi-algebraic structure of β+/U(d) is completely determined by two basic properties of density matrices, their semi-positivity and Hermiticity. In particular, it is shown that the Procesi–Schwarz inequalities in the elements of the integrity basis for R[β+]U(d) defining the orbit space are identically satisfied for all elements of β+. Bibliography: 9 titles. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-014-1959-z |