One-element differential standard bases with respect to inverse lexicographical orderings
We give a simplified proof of the following fact: for all nonnegative integers n and d the monomial y n d forms a differential standard basis of the ideal [ y n d ]. In contrast to Levi’s combinatorial proof, in this proof we use the Gröbner bases technique. Under some assumptions we prove the conve...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2009-12, Vol.163 (5), p.523-533 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a simplified proof of the following fact: for all nonnegative integers
n
and
d
the monomial
y
n
d
forms a differential standard basis of the ideal [
y
n
d
]. In contrast to Levi’s combinatorial proof, in this proof we use the Gröbner bases technique. Under some assumptions we prove the converse result: if an isobaric polynomial
f
forms a differential standard basis of [
f
], then
f
=
y
n
d
. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-009-9690-x |