Combined dynamic Grüss inequalities on time scales

We prove a more general version of the Grüss inequality by using the recent theory of combined dynamic derivatives on time scales and the more general notions of diamond- α derivative and integral. For the particular case where α = 1, one obtains the delta-integral Grüss inequality on time scales in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2009-09, Vol.161 (6), p.792-802
Hauptverfasser: Sidi Ammi, M. R., Torres, D. F. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a more general version of the Grüss inequality by using the recent theory of combined dynamic derivatives on time scales and the more general notions of diamond- α derivative and integral. For the particular case where α = 1, one obtains the delta-integral Grüss inequality on time scales in (see M. Bohner and T. Matthews [ 5 ]); for α = 0 a nabla-integral Grüss inequality is derived. If we further restrict ourselves by fixing the time scale to the real (or integer) numbers, then the standard continuous (discrete) inequalities are obtained.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-009-9600-2