On the best mean-square approximation of a real nonnegative finite continuous function of two variables by the modulus of a double Fourier integral. I

We study the nonlinear problem of mean-square approximation of a real finite nonnegative continuous function of two variables by the modulus of a double Fourier integral depending on two parameters. The solution of this problem is reduced to the solution of a nonlinear two-dimensional integral equat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2009-07, Vol.160 (3), p.343-356
Hauptverfasser: Savenko, P. O., Protsakh, L. P., Tkach, M. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the nonlinear problem of mean-square approximation of a real finite nonnegative continuous function of two variables by the modulus of a double Fourier integral depending on two parameters. The solution of this problem is reduced to the solution of a nonlinear two-dimensional integral equation of the Hammerstein type. Numerical algorithms for determination of branching lines and branched solutions of equation are constructed and substantiated. Some numerical examples are given.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-009-9502-3