On the best mean-square approximation of a real nonnegative finite continuous function of two variables by the modulus of a double Fourier integral. I
We study the nonlinear problem of mean-square approximation of a real finite nonnegative continuous function of two variables by the modulus of a double Fourier integral depending on two parameters. The solution of this problem is reduced to the solution of a nonlinear two-dimensional integral equat...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2009-07, Vol.160 (3), p.343-356 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the nonlinear problem of mean-square approximation of a real finite nonnegative continuous function of two variables by the modulus of a double Fourier integral depending on two parameters. The solution of this problem is reduced to the solution of a nonlinear two-dimensional integral equation of the Hammerstein type. Numerical algorithms for determination of branching lines and branched solutions of equation are constructed and substantiated. Some numerical examples are given. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-009-9502-3 |