Quartic First-Order Methods for Low-Rank Minimization
We study a general nonconvex formulation for low-rank minimization problems. We use recent results on non-Euclidean first-order methods to provide efficient and scalable algorithms. Our approach uses the geometry induced by the Bregman divergence of well-chosen kernel functions; for unconstrained pr...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2021-05, Vol.189 (2), p.341-363 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a general nonconvex formulation for low-rank minimization problems. We use recent results on non-Euclidean first-order methods to provide efficient and scalable algorithms. Our approach uses the geometry induced by the Bregman divergence of well-chosen kernel functions; for unconstrained problems, we introduce a novel family of Gram quartic kernels that improve numerical performance. Numerical experiments on Euclidean distance matrix completion and symmetric nonnegative matrix factorization show that our algorithms scale well and reach state-of-the-art performance when compared to specialized methods. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-021-01820-3 |