Computational Mechanics of Input–Output Processes: Structured Transformations and the ϵ-Transducer

Computational mechanics quantifies structure in a stochastic process via its causal states, leading to the process’s minimal, optimal predictor—the ϵ - machine . We extend computational mechanics to communication channels coupling two processes, obtaining an analogous optimal model—the ϵ - transduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2015-10, Vol.161 (2), p.404-451
Hauptverfasser: Barnett, Nix, Crutchfield, James P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computational mechanics quantifies structure in a stochastic process via its causal states, leading to the process’s minimal, optimal predictor—the ϵ - machine . We extend computational mechanics to communication channels coupling two processes, obtaining an analogous optimal model—the ϵ - transducer —of the stochastic mapping between them. Here, we lay the foundation of a structural analysis of communication channels, treating joint processes and processes with input. The result is a principled structural analysis of mechanisms that support information flow between processes. It is the first in a series on the structural information theory of memoryful channels, channel composition, and allied conditional information measures.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-015-1327-5