Computational Mechanics of Input–Output Processes: Structured Transformations and the ϵ-Transducer
Computational mechanics quantifies structure in a stochastic process via its causal states, leading to the process’s minimal, optimal predictor—the ϵ - machine . We extend computational mechanics to communication channels coupling two processes, obtaining an analogous optimal model—the ϵ - transduce...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2015-10, Vol.161 (2), p.404-451 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Computational mechanics quantifies structure in a stochastic process via its causal states, leading to the process’s minimal, optimal predictor—the
ϵ
-
machine
. We extend computational mechanics to communication channels coupling two processes, obtaining an analogous optimal model—the
ϵ
-
transducer
—of the stochastic mapping between them. Here, we lay the foundation of a structural analysis of communication channels, treating joint processes and processes with input. The result is a principled structural analysis of mechanisms that support information flow between processes. It is the first in a series on the structural information theory of memoryful channels, channel composition, and allied conditional information measures. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-015-1327-5 |