A New Derivation of the Quantum Navier–Stokes Equations in the Wigner–Fokker–Planck Approach

A quantum Navier–Stokes system for the particle, momentum, and energy densities is formally derived from the Wigner–Fokker–Planck equation using a moment method. The viscosity term depends on the particle density with a shear viscosity coefficient which equals the quantum diffusion coefficient of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2011-12, Vol.145 (6), p.1661-1673
Hauptverfasser: Jüngel, Ansgar, López, José Luis, Montejo–Gámez, Jesús
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A quantum Navier–Stokes system for the particle, momentum, and energy densities is formally derived from the Wigner–Fokker–Planck equation using a moment method. The viscosity term depends on the particle density with a shear viscosity coefficient which equals the quantum diffusion coefficient of the Fokker–Planck collision operator. The main idea of the derivation is the use of a so-called osmotic momentum operator, which is the sum of the phase-space momentum and the gradient operator. In this way, a Chapman–Enskog expansion of the Wigner function, which typically leads to viscous approximations, is avoided. Moreover, we show that the osmotic momentum emerges from local gauge theory.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-011-0388-3