On approximate mathematical modeling of the vapor–liquid coexistence curves by the Van der Waals equation of state and non-classical value of the critical exponent
Van der Waals equation of state as well as power laws and critical exponent theories are prototypes to study the cubic shape, asymmetries and “flatness” of the vapor–liquid equilibrium curves near the critical point. In this work we study two similar methods to determine the phase curves in analytic...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical chemistry 2014, Vol.52 (1), p.6-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Van der Waals equation of state as well as power laws and critical exponent theories are prototypes to study the cubic shape, asymmetries and “flatness” of the vapor–liquid equilibrium curves near the critical point. In this work we study two similar methods to determine the phase curves in analytical form, which differ from each other by simplicity of mathematical calculation. We analyze temperature dependence of the coexistence curves asymptotically close to the vapor–liquid critical point. We explain the novelty of our method with respect to the standard thermodynamic limit discussed in the literature. Therefore we show that the shape of the coexistence curves can strongly influence the accepted value of the critical exponent. The results of theoretical studies have been compared with the ones obtained by experimental methods. |
---|---|
ISSN: | 0259-9791 1572-8897 |
DOI: | 10.1007/s10910-013-0236-6 |