Rayleigh-Schrödinger perturbation theory generalized to eigen-operators in non-commutative rings

A perturbation scheme to find approximate solutions of a generalized spectral problem is presented. The spectral problem is generalized in the sense that the “eigenvalues” searched for, are not real numbers but operators in a non-commutative ring, and the associated “eigenfunctions” do not belong to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2011-04, Vol.49 (4), p.821-835
1. Verfasser: Cassam-Chenaï, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A perturbation scheme to find approximate solutions of a generalized spectral problem is presented. The spectral problem is generalized in the sense that the “eigenvalues” searched for, are not real numbers but operators in a non-commutative ring, and the associated “eigenfunctions” do not belong to an Hilbert space but are elements of a module on the non-commutative ring. The method is relevant wherever two sets of degrees of freedom can be distinguished in a quantum system. This is the case for example in rotation-vibration molecular spectroscopy. The article clarifies the relationship between the exact solutions of rotation-vibration molecular Hamiltonians and the solutions of the effective rotational Hamiltonians derived in previous works. It also proposes a less restrictive form for the effective dipole moment than the form considered by spectroscopists so far.
ISSN:0259-9791
1572-8897
DOI:10.1007/s10910-010-9779-y