Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis
We present a method using principal component analysis (PCA) to process x-ray pulses with severe shape variation where traditional optimal filter methods fail. We demonstrate that PCA is able to noise-filter and extract energy information from x-ray pulses despite their different shapes. We apply th...
Gespeichert in:
Veröffentlicht in: | Journal of low temperature physics 2016-07, Vol.184 (1-2), p.397-404 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a method using principal component analysis (PCA) to process x-ray pulses with severe shape variation where traditional optimal filter methods fail. We demonstrate that PCA is able to noise-filter and extract energy information from x-ray pulses despite their different shapes. We apply this method to a dataset from an x-ray thermal kinetic inductance detector which has severe pulse shape variation arising from position-dependent absorption. |
---|---|
ISSN: | 0022-2291 1573-7357 |
DOI: | 10.1007/s10909-016-1480-5 |