DC-programming for neural network optimizations

We discuss two key problems related to learning and optimization of neural networks: the computation of the adversarial attack for adversarial robustness and approximate optimization of complex functions. We show that both problems can be cast as instances of DC-programming. We give an explicit deco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2024-01
Hauptverfasser: Awasthi, Pranjal, Mao, Anqi, Mohri, Mehryar, Zhong, Yutao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss two key problems related to learning and optimization of neural networks: the computation of the adversarial attack for adversarial robustness and approximate optimization of complex functions. We show that both problems can be cast as instances of DC-programming. We give an explicit decomposition of the corresponding functions as differences of convex functions (DC) and report the results of experiments demonstrating the effectiveness of the DCA algorithm applied to these problems.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-023-01344-2