Traveling Phase Interfaces in Viscous Forward–Backward Diffusion Equations

The viscous regularization of an ill-posed diffusion equation with bistable nonlinearity predicts a hysteretic behavior of dynamical phase transitions but a complete mathematical understanding of the intricate multiscale evolution is still missing. We shed light on the fine structure of propagating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2024-08
Hauptverfasser: Geldhauser, Carina, Herrmann, Michael, Janßen, Dirk
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The viscous regularization of an ill-posed diffusion equation with bistable nonlinearity predicts a hysteretic behavior of dynamical phase transitions but a complete mathematical understanding of the intricate multiscale evolution is still missing. We shed light on the fine structure of propagating phase boundaries by carefully examining traveling wave solutions in a special case. Assuming a trilinear constitutive relation we characterize all waves that possess a monotone profile and connect the two phases by a single interface of positive width. We further study the two sharp-interface regimes related to either vanishing viscosity or the bilinear limit.
ISSN:1040-7294
1572-9222
DOI:10.1007/s10884-024-10382-7