Local Well-Posedness of the Periodic Nonlinear Schrödinger Equation with a Quadratic Nonlinearity $$\overline{u}^2$$ in Negative Sobolev Spaces
We study low regularity local well-posedness of the nonlinear Schrödinger equation (NLS) with the quadratic nonlinearity $$\overline{u}^2$$ u ¯ 2 , posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the $$X^{s, b}$$ X s , b -space is known to fai...
Gespeichert in:
Veröffentlicht in: | Journal of dynamics and differential equations 2023-08 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study low regularity local well-posedness of the nonlinear Schrödinger equation (NLS) with the quadratic nonlinearity
$$\overline{u}^2$$
u
¯
2
, posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the
$$X^{s, b}$$
X
s
,
b
-space is known to fail when the regularity
s
is below some threshold value, we establish local well-posedness for such low regularity by introducing modifications on the
$$X^{s, b}$$
X
s
,
b
-space. |
---|---|
ISSN: | 1040-7294 1572-9222 |
DOI: | 10.1007/s10884-023-10295-x |