Local Well-Posedness of the Periodic Nonlinear Schrödinger Equation with a Quadratic Nonlinearity $$\overline{u}^2$$ in Negative Sobolev Spaces

We study low regularity local well-posedness of the nonlinear Schrödinger equation (NLS) with the quadratic nonlinearity  $$\overline{u}^2$$ u ¯ 2 , posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the $$X^{s, b}$$ X s , b -space is known to fai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2023-08
1. Verfasser: Liu, Ruoyuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study low regularity local well-posedness of the nonlinear Schrödinger equation (NLS) with the quadratic nonlinearity  $$\overline{u}^2$$ u ¯ 2 , posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the $$X^{s, b}$$ X s , b -space is known to fail when the regularity s is below some threshold value, we establish local well-posedness for such low regularity by introducing modifications on the $$X^{s, b}$$ X s , b -space.
ISSN:1040-7294
1572-9222
DOI:10.1007/s10884-023-10295-x