Dynamical Parallelepipeds in Minimal Systems

For a topological dynamical system ( X , T ) and d ∈ N , the associated dynamical parallelepiped Q [ d ] was defined by Host–Kra–Maass. For a minimal distal system it was shown by them that the relation ∼ d − 1 defined on Q [ d − 1 ] is an equivalence relation; the closing parallelepiped property ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2013-09, Vol.25 (3), p.765-776
Hauptverfasser: Tu, Siming, Ye, Xiangdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a topological dynamical system ( X , T ) and d ∈ N , the associated dynamical parallelepiped Q [ d ] was defined by Host–Kra–Maass. For a minimal distal system it was shown by them that the relation ∼ d − 1 defined on Q [ d − 1 ] is an equivalence relation; the closing parallelepiped property holds, and for each x ∈ X the collection of points in Q [ d ] with first coordinate x is a minimal subset under the face transformations. We give examples showing that the results do not extend to general minimal systems.
ISSN:1040-7294
1572-9222
DOI:10.1007/s10884-013-9313-6