Packing cubes into a cube is NP-complete in the strong sense

While the problem of packing two-dimensional squares into a square, in which a set of squares is packed into a big square, has been proved to be NP-complete, the computational complexity of the d-dimensional ( d ≥ 3 ) problems of packing hypercubes into a hypercube remains an open question (Acta Inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2015-01, Vol.29 (1), p.197-215
Hauptverfasser: Lu, Yiping, Chen, Danny Z., Cha, Jianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While the problem of packing two-dimensional squares into a square, in which a set of squares is packed into a big square, has been proved to be NP-complete, the computational complexity of the d-dimensional ( d ≥ 3 ) problems of packing hypercubes into a hypercube remains an open question (Acta Inf 41(9):595–606, 2005 ; Theor Comput Sci 410(44):4504–4532, 2009 ). In this paper, the authors show that the three-dimensional problem version of packing cubes into a cube is NP-complete in the strong sense.
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-013-9701-1