The Pfaffian property of Cartesian products of graphs

Suppose that G =( V , E ) is a graph with even vertices. An even cycle C is a nice cycle of G if G − V ( C ) has a perfect matching. An orientation of G is a Pfaffian orientation if each nice cycle C has an odd number of edges directed in either direction of the cycle. Let P n and C n denote the pat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2014-04, Vol.27 (3), p.530-540
Hauptverfasser: Lu, Fuliang, Zhang, Lianzhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that G =( V , E ) is a graph with even vertices. An even cycle C is a nice cycle of G if G − V ( C ) has a perfect matching. An orientation of G is a Pfaffian orientation if each nice cycle C has an odd number of edges directed in either direction of the cycle. Let P n and C n denote the path and the cycle on n vertices, respectively. In this paper, we characterize the Pfaffian property of Cartesian products G × P 2 n and G × C 2 n for any graph G in terms of forbidden subgraphs of  G . This extends the results in (Yan and Zhang in Discrete Appl Math 154:145–157, 2006).
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-012-9533-4