Almost optimal solutions for bin coloring problems

In this paper we study two interesting bin coloring problems: Minimum Bin Coloring Problem (MinBC) and Online Maximum Bin Coloring Problem (OMaxBC), motivated from several applications in networking. For the MinBC problem, we present two near linear time approximation algorithms to achieve almost op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2008-07, Vol.16 (1), p.16-27
Hauptverfasser: Lin, Mingen, Lin, Zhiyong, Xu, Jinhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study two interesting bin coloring problems: Minimum Bin Coloring Problem (MinBC) and Online Maximum Bin Coloring Problem (OMaxBC), motivated from several applications in networking. For the MinBC problem, we present two near linear time approximation algorithms to achieve almost optimal solutions, i.e., no more than OPT +2 and OPT +1 respectively, where OPT is the optimal solution. For the OMaxBC problem, we first introduce a deterministic 2-competitive greedy algorithm, and then give lower bounds for any deterministic and randomized (against adaptive offline adversary) online algorithms. The lower bounds show that our deterministic algorithm achieves the best possible competitive ratio.
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-007-9094-0