Almost optimal solutions for bin coloring problems
In this paper we study two interesting bin coloring problems: Minimum Bin Coloring Problem (MinBC) and Online Maximum Bin Coloring Problem (OMaxBC), motivated from several applications in networking. For the MinBC problem, we present two near linear time approximation algorithms to achieve almost op...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2008-07, Vol.16 (1), p.16-27 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study two interesting bin coloring problems: Minimum Bin Coloring Problem (MinBC) and Online Maximum Bin Coloring Problem (OMaxBC), motivated from several applications in networking. For the MinBC problem, we present two near linear time approximation algorithms to achieve almost optimal solutions, i.e., no more than
OPT
+2 and
OPT
+1 respectively, where
OPT
is the optimal solution. For the OMaxBC problem, we first introduce a deterministic 2-competitive greedy algorithm, and then give lower bounds for any deterministic and randomized (against adaptive offline adversary) online algorithms. The lower bounds show that our deterministic algorithm achieves the best possible competitive ratio. |
---|---|
ISSN: | 1382-6905 1573-2886 |
DOI: | 10.1007/s10878-007-9094-0 |