Homotopy Equivalence in Finite Digital Images

For digital images, there is an established homotopy equivalence relation which parallels that of classical topology. Many classical homotopy equivalence invariants, such as the Euler characteristic and the homology groups, do not remain invariants in the digital setting. This paper develops a numer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision 2015-11, Vol.53 (3), p.288-302
Hauptverfasser: Haarmann, Jason, Murphy, Meg P., Peters, Casey S., Staecker, P. Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For digital images, there is an established homotopy equivalence relation which parallels that of classical topology. Many classical homotopy equivalence invariants, such as the Euler characteristic and the homology groups, do not remain invariants in the digital setting. This paper develops a numerical digital homotopy invariant and begins to catalog all possible connected digital images on a small number of points, up to homotopy equivalence.
ISSN:0924-9907
1573-7683
DOI:10.1007/s10851-015-0578-8