On the Preeminence of Euclidean Geometry: Nash’s Embedding Theorems
According to Kant’s philosophy of geometry, Euclidean geometry is synthetic a priori . The advent of non-Euclidean geometries proved this position at least problematic, if not obsolete. However, based on Nash’s embedding theorems we show that a weaker notion of preeminence supports the view that Euc...
Gespeichert in:
Veröffentlicht in: | Journal for general philosophy of science 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | According to Kant’s philosophy of geometry, Euclidean geometry is synthetic
a priori
. The advent of non-Euclidean geometries proved this position at least problematic, if not obsolete. However, based on Nash’s embedding theorems we show that a weaker notion of
preeminence
supports the view that Euclidean geometry, even though not strictly
a priori
, enjoys a more fundamental status than non-Euclidean geometries. |
---|---|
ISSN: | 0925-4560 1572-8587 |
DOI: | 10.1007/s10838-024-09684-7 |