On the Preeminence of Euclidean Geometry: Nash’s Embedding Theorems

According to Kant’s philosophy of geometry, Euclidean geometry is synthetic a priori . The advent of non-Euclidean geometries proved this position at least problematic, if not obsolete. However, based on Nash’s embedding theorems we show that a weaker notion of preeminence supports the view that Euc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal for general philosophy of science 2024-10
Hauptverfasser: Dumitru, Mircea, Ornea, Liviu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:According to Kant’s philosophy of geometry, Euclidean geometry is synthetic a priori . The advent of non-Euclidean geometries proved this position at least problematic, if not obsolete. However, based on Nash’s embedding theorems we show that a weaker notion of preeminence supports the view that Euclidean geometry, even though not strictly a priori , enjoys a more fundamental status than non-Euclidean geometries.
ISSN:0925-4560
1572-8587
DOI:10.1007/s10838-024-09684-7