Diversifying chemical libraries with generative topographic mapping
Generative topographic mapping was used to investigate the possibility to diversify the in-house compounds collection of Boehringer Ingelheim (BI). For this purpose, a 2D map covering the relevant chemical space was trained, and the BI compound library was compared to the Aldrich-Market Select (AMS)...
Gespeichert in:
Veröffentlicht in: | Journal of computer-aided molecular design 2020-07, Vol.34 (7), p.805-815 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Generative topographic mapping was used to investigate the possibility to diversify the in-house compounds collection of Boehringer Ingelheim (BI). For this purpose, a 2D map covering the relevant chemical space was trained, and the BI compound library was compared to the Aldrich-Market Select (AMS) database of more than 8M purchasable compounds. In order to discover new (sub)structures, the “AutoZoom” tool was developed and applied in order to analyze chemotypes of molecules residing in heavily populated zones of a map and to extract the corresponding maximum common substructures. A set of 401K new structures from the AMS database was retrieved and checked for drug-likeness and biological activity. |
---|---|
ISSN: | 0920-654X 1573-4951 |
DOI: | 10.1007/s10822-019-00215-x |