Broken circuit complexes and hyperplane arrangements

We study Stanley–Reisner ideals of broken circuit complexes and characterize those ones admitting linear resolutions or being complete intersections. These results will then be used to characterize hyperplane arrangements whose Orlik–Terao ideal has the same properties. As an application, we improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2013-12, Vol.38 (4), p.989-1016
Hauptverfasser: Van Le, Dinh, Römer, Tim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study Stanley–Reisner ideals of broken circuit complexes and characterize those ones admitting linear resolutions or being complete intersections. These results will then be used to characterize hyperplane arrangements whose Orlik–Terao ideal has the same properties. As an application, we improve a result of Wilf on upper bounds for the coefficients of the chromatic polynomial of a maximal planar graph. We also show that for a matroid with a complete intersection broken circuit complex, the supersolvability of the matroid is equivalent to the Koszulness of its Orlik–Solomon algebra.
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-013-0435-z