Broken circuit complexes and hyperplane arrangements
We study Stanley–Reisner ideals of broken circuit complexes and characterize those ones admitting linear resolutions or being complete intersections. These results will then be used to characterize hyperplane arrangements whose Orlik–Terao ideal has the same properties. As an application, we improve...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2013-12, Vol.38 (4), p.989-1016 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Stanley–Reisner ideals of broken circuit complexes and characterize those ones admitting linear resolutions or being complete intersections. These results will then be used to characterize hyperplane arrangements whose Orlik–Terao ideal has the same properties. As an application, we improve a result of Wilf on upper bounds for the coefficients of the chromatic polynomial of a maximal planar graph. We also show that for a matroid with a complete intersection broken circuit complex, the supersolvability of the matroid is equivalent to the Koszulness of its Orlik–Solomon algebra. |
---|---|
ISSN: | 0925-9899 1572-9192 |
DOI: | 10.1007/s10801-013-0435-z |