Shortest path poset of Bruhat intervals
We define the shortest path poset SP ( u , v ) of a Bruhat interval [ u , v ], by considering the shortest u – v paths in the Bruhat graph of a Coxeter group W , where u , v ∈ W . We consider the case of SP ( u , v ) having a unique rising chain under a reflection order and show that in this case SP...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2013-11, Vol.38 (3), p.585-596 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define the shortest path poset
SP
(
u
,
v
) of a Bruhat interval [
u
,
v
], by considering the shortest
u
–
v
paths in the Bruhat graph of a Coxeter group
W
, where
u
,
v
∈
W
. We consider the case of
SP
(
u
,
v
) having a unique rising chain under a reflection order and show that in this case
SP
(
u
,
v
) is a Gorenstein
∗
poset. This allows us to derive the nonnegativity of certain coefficients of the complete
cd
-index. We furthermore show that the shortest path poset of an irreducible, finite Coxeter group exhibits a symmetric chain decomposition. |
---|---|
ISSN: | 0925-9899 1572-9192 |
DOI: | 10.1007/s10801-012-0416-7 |