Shortest path poset of Bruhat intervals

We define the shortest path poset SP ( u , v ) of a Bruhat interval [ u , v ], by considering the shortest u – v paths in the Bruhat graph of a Coxeter group W , where u , v ∈ W . We consider the case of SP ( u , v ) having a unique rising chain under a reflection order and show that in this case SP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2013-11, Vol.38 (3), p.585-596
1. Verfasser: Blanco, Saúl A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define the shortest path poset SP ( u , v ) of a Bruhat interval [ u , v ], by considering the shortest u – v paths in the Bruhat graph of a Coxeter group W , where u , v ∈ W . We consider the case of SP ( u , v ) having a unique rising chain under a reflection order and show that in this case SP ( u , v ) is a Gorenstein ∗ poset. This allows us to derive the nonnegativity of certain coefficients of the complete cd -index. We furthermore show that the shortest path poset of an irreducible, finite Coxeter group exhibits a symmetric chain decomposition.
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-012-0416-7