Lattice point generating functions and symmetric cones

We show that a recent identity of Beck–Gessel–Lee–Savage on the generating function of symmetrically constrained compositions of integers generalizes naturally to a family of convex polyhedral cones that are invariant under the action of a finite reflection group. We obtain general expressions for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2013-11, Vol.38 (3), p.543-566
Hauptverfasser: Beck, Matthias, Bliem, Thomas, Braun, Benjamin, Savage, Carla D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a recent identity of Beck–Gessel–Lee–Savage on the generating function of symmetrically constrained compositions of integers generalizes naturally to a family of convex polyhedral cones that are invariant under the action of a finite reflection group. We obtain general expressions for the multivariate generating functions of such cones, and work out their general form more specifically for all symmetry groups of type A (previously known) and types B and D (new). We obtain several applications of these expressions in type B, including identities involving permutation statistics and lecture hall partitions.
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-012-0414-9