Cluster expansion formulas and perfect matchings

We study cluster algebras with principal coefficient systems that are associated to unpunctured surfaces. We give a direct formula for the Laurent polynomial expansion of cluster variables in these cluster algebras in terms of perfect matchings of a certain graph G T , γ that is constructed from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2010-09, Vol.32 (2), p.187-209
Hauptverfasser: Musiker, Gregg, Schiffler, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study cluster algebras with principal coefficient systems that are associated to unpunctured surfaces. We give a direct formula for the Laurent polynomial expansion of cluster variables in these cluster algebras in terms of perfect matchings of a certain graph G T , γ that is constructed from the surface by recursive glueing of elementary pieces that we call tiles. We also give a second formula for these Laurent polynomial expansions in terms of subgraphs of the graph  G T , γ .
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-009-0210-3