Shellable complexes from multicomplexes
Suppose a group G acts properly on a simplicial complex Γ . Let l be the number of G -invariant vertices, and p 1 , p 2 ,…, p m be the sizes of the G -orbits having size greater than 1. Then Γ must be a subcomplex of . A result of Novik gives necessary conditions on the face numbers of Cohen–Macaula...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2010-08, Vol.32 (1), p.99-112 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose a group
G
acts properly on a simplicial complex
Γ
. Let
l
be the number of
G
-invariant vertices, and
p
1
,
p
2
,…,
p
m
be the sizes of the
G
-orbits having size greater than 1. Then
Γ
must be a subcomplex of
. A result of Novik gives necessary conditions on the face numbers of Cohen–Macaulay subcomplexes of
Λ
. We show that these conditions are also sufficient, and thus provide a complete characterization of the face numbers of these complexes. |
---|---|
ISSN: | 0925-9899 1572-9192 |
DOI: | 10.1007/s10801-009-0206-z |